
1

Programming Logic and 

Design
Sixth Edition

Chapter 1

An Overview of Computers and

Programming

Objectives

In this chapter, you will learn about:

• Computer systems

• Simple program logic

• The steps involved in the program development 

cycle

• Pseudocode statements and flowchart symbols

• Using a sentinel value to end a program

• Programming and user environments

• The evolution of programming models

Programming Logic & Design, Sixth Edition 2

Understanding Computer Systems

• Computer system 

– Combination of all the components required to 

process and store data using a computer

• Hardware 

– Equipment associated with a computer

• Software 

– Computer instructions 

– Tell the hardware what to do

– Programs

• Instructions written by programmers

Programming Logic & Design, Sixth Edition 3

Understanding Computer Systems 

(continued)

• Programming

– Writing software instructions

• Computer hardware and software accomplish three 

major operations

– Input

• Data items enter computer

– Processing

• By central processing unit (CPU)

– Output

Programming Logic & Design, Sixth Edition 4

Understanding Computer Systems 

(continued)

• Programming language

– Use to write computer instructions

– Examples

• Visual Basic, C#, C++, or Java

• Syntax

– Rules governing its word usage and punctuation

• Computer memory

– Computer’s temporary, internal storage

– Volatile

Programming Logic & Design, Sixth Edition 5

Understanding Computer Systems 

(continued)

• Permanent storage devices

– Nonvolatile

• Compiler or an interpreter

– Translates program code into machine language 

(binary language)

– Checks for syntax errors

• Program executes or runs

– Input will be accepted, some processing will occur, 

and results will be output

Programming Logic & Design, Sixth Edition 6



2

Understanding Simple Program Logic

• Program with syntax errors cannot execute

• Logical errors

– Errors in program logic 

– Produce incorrect output as a result 

• Logic of the computer program

– Sequence of specific instructions in specific order

• Variable 

– Named memory location whose value can vary

Programming Logic & Design, Sixth Edition 7

Understanding the Program

Development Cycle

• Program development cycle

– Understand the problem

– Plan the logic

– Code the program

– Use software (a compiler or interpreter) to translate 

the program into machine language

– Test the program

– Put the program into production

– Maintain the program

Programming Logic & Design, Sixth Edition 8

Understanding the Program

Development Cycle (continued)

Programming Logic & Design, Sixth Edition 9

Figure 1-1 The program development cycle

Understanding the Problem

• One of the most difficult aspects of programming

• Users or end users

– People for whom program is written

• Documentation

– Supporting paperwork for a program

Programming Logic & Design, Sixth Edition 10

Planning the Logic

• Heart of the programming process

• Most common planning tools 

– Flowcharts 

– Pseudocode

• Desk-checking

– Walking through a program’s logic on paper before 

you actually write the program

Programming Logic & Design, Sixth Edition 11

Coding the Program

• Hundreds of programming languages are available

– Choose based on features

– Alike in their basic capabilities

• Easier than planning step

Programming Logic & Design, Sixth Edition 12



3

Using Software to Translate the 

Program into Machine Language

• Translator program

– Compiler or interpreter

– Changes the programmer’s English-like high-level 

programming language into the low-level 

machine language

• Syntax error

– Misuse of a language’s grammar rules

– Programmer corrects listed syntax errors

– Might need to recompile the code several times

Programming Logic & Design, Sixth Edition 13

Using Software to Translate the 

Program into Machine Language 

(continued)

Figure 1-2 Creating an executable program

Programming Logic & Design, Sixth Edition 14

Testing the Program

• Logical error 

– Use a syntactically correct statement but use the 

wrong one for the current context

• Test

– Execute the program with some sample data to see 

whether the results are logically correct

• Programs should be tested with many sets of data

Programming Logic & Design, Sixth Edition 15

Putting the Program into Production

• Process depends on program’s purpose

– May take several months

• Conversion

– Entire set of actions an organization must take to 

switch over to using a new program or set of 

programs

Programming Logic & Design, Sixth Edition 16

Maintaining the Program

• Maintenance

– Making changes after program is put into production

• Common first programming job 

– Maintaining previously written programs

• Make changes to existing programs

– Repeat the development cycle

Programming Logic & Design, Sixth Edition 17

Using Pseudocode Statements

and Flowchart Symbols

• Pseudocode 

– English-like representation of the logical steps it 

takes to solve a problem

• Flowchart

– Pictorial representation of the logical steps it takes to 

solve a problem

Programming Logic & Design, Sixth Edition 18



4

Writing Pseudocode

• Pseudocode representation of a number-doubling 

problem

start

input myNumber

set myAnswer = myNumber * 2

output myAnswer

stop

Programming Logic & Design, Sixth Edition 19

Writing Pseudocode (continued)

• Programmers preface their pseudocode with a 
beginning statement like start and end it with a 

terminating statement like stop

• Flexible because it is a planning tool

Programming Logic & Design, Sixth Edition 20

Drawing Flowcharts

• Create a flowchart

– Draw geometric shapes that contain the individual 

statements 

– Connect shapes with arrows

• Input symbol

– Indicates input operation

– Parallelogram

• Processing symbol

– Processing statements such as arithmetic

– Rectangle

Programming Logic & Design, Sixth Edition 21

Drawing Flowcharts (continued)

• Output symbol

– Represents output statements

– Parallelogram

• Flowlines

– Arrows that connect steps

• Terminal symbols

– Start/stop symbols

– Shaped like a racetrack

– Also called lozenge

Programming Logic & Design, Sixth Edition 22

Drawing Flowcharts (continued)

Figure 1-6 Flowchart and pseudocode of program that doubles a number

Programming Logic & Design, Sixth Edition 23

Repeating Instructions

• After the flowchart or pseudocode has been 

developed, the programmer only needs to:

– Buy a computer

– Buy a language compiler

– Learn a programming language

– Code the program

– Attempt to compile it 

– Fix the syntax errors

– Compile it again

– Test it with several sets of data

– Put it into production

Programming Logic & Design, Sixth Edition 24



5

Repeating Instructions (continued)

• Loop

– Repetition of a series of steps

• Infinite loop

– Repeating flow of logic with no end

Programming Logic & Design, Sixth Edition 25

Repeating Instructions (continued)

Figure 1-8 Flowchart of infinite number-doubling program

Programming Logic & Design, Sixth Edition 26

Using a Sentinel Value to End

a Program

• Making a decision

– Testing a value

– Decision symbol

• Diamond shape

• Dummy value

– Data-entry value that the user will never need

– Sentinel value

• eof (“end of file”)

– Marker at the end of a file that automatically acts as 

a sentinel

Programming Logic & Design, Sixth Edition 27

Using a Sentinel Value to End

a Program (continued)

Figure 1-9 Flowchart of number-doubling program with sentinel value of 0

Programming Logic & Design, Sixth Edition 28

Using a Sentinel Value to End

a Program (continued)

Figure 1-10 Flowchart using eof

Programming Logic & Design, Sixth Edition 29

Understanding Programming

and User Environments

• Many options for programming and user 

environments

Programming Logic & Design, Sixth Edition 30



6

Understanding Programming 

Environments

• Use a keyboard to type program statements into an 

editor

– Plain text editor

• Similar to a word processor but without as many 

features

– Text editor that is part of an integrated 

development environment (IDE)

• Software package that provides an editor, compiler, 

and other programming tools

Programming Logic & Design, Sixth Edition 31

Understanding Programming 

Environments (continued)

Figure 1-12 A C# number-doubling program in Visual Studio

Programming Logic & Design, Sixth Edition 32

Understanding User Environments

• Command line 

– Location on your computer screen at which you type 

text entries to communicate with the computer’s 

operating system

• Graphical user interface (GUI)

– Allows users to interact with a program in a graphical 

environment

Programming Logic & Design, Sixth Edition 33

Understanding User Environments 

(continued)

Figure 1-13 Executing a number-doubling program 

in a command-line environment

Programming Logic & Design, Sixth Edition 34

Understanding User Environments 

(continued)

Figure 1-14 Executing a number-doubling program in a GUI environment

Programming Logic & Design, Sixth Edition 35

Understanding the Evolution

of Programming Models

• People have been writing modern computer 

programs since the 1940s

• Newer programming languages

– Look much more like natural language 

– Easier to use

– Create self-contained modules or program segments 

that can be pieced together in a variety of ways

Programming Logic & Design, Sixth Edition 36



7

Understanding the Evolution

of Programming Models (continued)

• Major models or paradigms used by programmers

– Procedural programming

• Focuses on the procedures that programmers create

– Object-oriented programming

• Focuses on objects, or “things,” and describes their 

features (or attributes) and their behaviors

– Major difference 

• Focus the programmer takes during the earliest 

planning stages of a project

Programming Logic & Design, Sixth Edition 37

Summary

• Computer programming

– Requires specific syntax

– Must develop correct logic

• Programmer’s job

– Understanding the problem, planning the logic, 

coding the program, translating the program into 

machine language, testing the program, putting the 

program into production, and maintaining it

• Procedural and object-oriented programmers 

approach problems differently

Programming Logic & Design, Sixth Edition 38


